首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12002篇
  免费   1853篇
  国内免费   1620篇
电工技术   1645篇
综合类   1063篇
化学工业   275篇
金属工艺   140篇
机械仪表   1080篇
建筑科学   168篇
矿业工程   108篇
能源动力   231篇
轻工业   71篇
水利工程   302篇
石油天然气   40篇
武器工业   80篇
无线电   1491篇
一般工业技术   1285篇
冶金工业   289篇
原子能技术   9篇
自动化技术   7198篇
  2024年   68篇
  2023年   295篇
  2022年   531篇
  2021年   522篇
  2020年   590篇
  2019年   451篇
  2018年   412篇
  2017年   505篇
  2016年   531篇
  2015年   596篇
  2014年   824篇
  2013年   1274篇
  2012年   927篇
  2011年   909篇
  2010年   689篇
  2009年   840篇
  2008年   858篇
  2007年   869篇
  2006年   757篇
  2005年   640篇
  2004年   527篇
  2003年   377篇
  2002年   302篇
  2001年   232篇
  2000年   168篇
  1999年   160篇
  1998年   116篇
  1997年   92篇
  1996年   67篇
  1995年   67篇
  1994年   53篇
  1993年   35篇
  1992年   40篇
  1991年   30篇
  1990年   19篇
  1989年   17篇
  1988年   10篇
  1987年   2篇
  1986年   13篇
  1985年   12篇
  1984年   14篇
  1983年   6篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1975年   4篇
  1964年   2篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
For dynamic scheduling, which is daily decision-making in a job-shop, machine availability prediction, disturbance detection and performance evaluation are always common bottlenecks. Previous research efforts on addressing the bottlenecks primarily emphasize on the analysis of data from the physical job-shop, but with little connection and convergence with its virtual models and simulated data. By introducing digital twin (DT), further convergence between physical and virtual spaces of the job-shop can be achieved, which greatly enables dynamic scheduling. DT fuses both real and simulated data to provide more information for the prediction of machine availability on one hand; and on the other hand, it helps to detect disturbances through comparing the physical machine with its continuously updated digital counterpart in real time, triggering timely rescheduling when needed. It also enables comprehensive performance evaluation for rescheduling using multiple-dimension models, which can describe geometric properties, physics parameters and behaviors of the machines. In the paper, a five-dimension DT for a machine in the job-shop is introduced first, then the DT-based machine availability prediction, disturbance detection and performance evaluation methods are explored. Based on this, a DT-enhanced dynamic scheduling methodology is proposed. A scheduling process of making hydraulic valves in a machining job-shop is taken as a case study to illustrate the effectiveness and advantages of the proposed method.  相似文献   
92.
Production scheduling involves all activities of building production schedules, including coordinating and assigning activities to each person, group of people, or machine and arranging work orders in each workplace. Production scheduling must solve all problems such as minimizing customer wait time, storage costs, and production time; and effectively using the enterprise’s human resources. This paper studies the application of flexible job shop modelling on scheduling a woven labelling process. The labelling process includes several steps which are handled in different work-stations. Each workstation is also comprised of several identical parallel machines. In this study, job splitting is allowed so that the power of work stations can be utilized better. The final objective is to minimize the total completion time of all jobs. The results show a significant improvement since the new planning may save more than 60% of lead time compared to the current schedule. The contribution of this research is to propose a flexible job shop model for scheduling a woven labelling process. The proposed approach can also be applied to support complex production scheduling processes under fuzzy environments in different industries. A practical case study demonstrates the effectiveness of the proposed model.  相似文献   
93.
As the keystones of the personalized manufacturing, the Industrial Internet of Things (IIoT) consolidated with 3D printing pave the path for the era of Industry 4.0 and smart manufacturing. By resembling the age of craft manufacturing, Industry 4.0 expedites the alteration from mass production to mass customization. When distributed 3D printers (3DPs) are shared and collaborated in the IIoT, a promising dynamic, globalized, economical, and time-effective manufacturing environment for customized products will appear. However, the optimum allocation and scheduling of the personalized 3D printing tasks (3DPTs) in the IIoT in a manner that respects the customized attributes submitted for each model while satisfying not only the real-time requirements but also the workload balancing between the distributed 3DPs is an inevitable research challenge that needs further in-depth investigations. Therefore, to address this issue, this paper proposes a real-time green-aware multi-task scheduling architecture for personalized 3DPTs in the IIoT. The proposed architecture is divided into two interconnected folds, namely, allocation and scheduling. A robust online allocation algorithm is proposed to generate the optimal allocation for the 3DPTs. This allocation algorithm takes into consideration meeting precisely the customized user-defined attributes for each submitted 3DPT in the IIoT as well as balancing the workload between the distributed 3DPs simultaneously with improving their energy efficiency. Moreover, meeting the predefined deadline for each submitted 3DPT is among the main objectives of the proposed architecture. Consequently, an adaptive real-time multi-task priority-based scheduling (ARMPS) algorithm has been developed. The built ARMPS algorithm respects both the dynamicity and the real-time requirements of the submitted 3DPTs. A set of performance evaluation tests has been performed to thoroughly investigate the robustness of the proposed algorithm. Simulation results proved the robustness and scalability of the proposed architecture that surpasses its counterpart state-of-the-art architectures, especially in high-load environments.  相似文献   
94.
With the development of the globalization of economy and manufacturing industry, distributed manufacturing mode has become a hot topic in current production research. In the context of distributed manufacturing, one job has different process routes in different workshops because of heterogeneous manufacturing resources and manufacturing environments in each factory. Considering the heterogeneous process planning problems and shop scheduling problems simultaneously can take advantage of the characteristics of distributed factories to finish the processing task well. Thus, a novel network-based mixed-integer linear programming (MILP) model is established for distributed integrated process planning and scheduling problem (DIPPS). The paper designs a new encoding method based on the process network and its OR-nodes, and then proposes a discrete artificial bee colony algorithm (DABC) to solve the DIPPS problem. The proposed DABC can guarantee the feasibility of individuals via specially-designed mapping and switching operations, so that the process precedence constraints contained by the network graph can be satisfied in the entire procedure of the DABC algorithm. Finally, the proposed MILP model is verified and the proposed DABC is tested through some open benchmarks. By comparing with other powerful reported algorithms and obtaining new better solutions, the experiment results prove the effectiveness of the proposed model and DABC algorithm successfully.  相似文献   
95.
The introduction of modern technologies in manufacturing is contributing to the emergence of smart (and data-driven) manufacturing systems, known as Industry 4.0. The benefits of adopting such technologies can be fully utilized by presenting optimization models in every step of the decision-making process. This includes the optimization of maintenance plans and production schedules, which are two essential aspects of any manufacturing process. In this paper, we consider the real-time joint optimization of maintenance planning and production scheduling in smart manufacturing systems. We have considered a flexible job shop production layout and addressed several issues that usually take place in practice. The addressed issues are: new job arrivals, unexpected due date changes, machine degradation, random breakdowns, minimal repairs, and condition-based maintenance (CBM). We have proposed a real-time optimization-based system that utilizes a modified hybrid genetic algorithm, an integrated proactive-reactive optimization model, and hybrid rescheduling policies. A set of modified benchmark problems is used to test the proposed system by comparing its performance to several other optimization algorithms and methods used in practice. The results show the superiority of the proposed system for solving the problem under study. The results also emphasize the importance of the quality of the generated baseline plans (i.e., initial integrated plans), the use of hybrid rescheduling policies, and the importance of rescheduling times (i.e., reaction times) for cost savings.  相似文献   
96.
Effective tool wear monitoring (TWM) is essential for accurately assessing the degree of tool wear and for timely preventive maintenance. Existing data-driven monitoring methods mainly rely on complex feature engineering, which reduces the monitoring efficiency. This paper proposes a novel TWM model based on a parallel residual and stacked bidirectional long short-term memory (PRes–SBiLSTM) network. First, a parallel residual network (PResNet) is used to extract the multi-scale local features of sensor signals adaptively. Subsequently, a stacked bidirectional long short-term memory (SBiLSTM) network is used to obtain the time-series features related to the tool wear characteristics. Finally, the predicted tool wear value is outputted through a fully connected network. A smoothing correction method is applied to improve the prediction accuracy. The proposed model is experimentally verified to have a high prediction accuracy without sacrificing its generalization ability. A TWM system framework based on the PRes–SBiLSTM network is proposed, which has a certain reference value for TWM in actual industrial environments.  相似文献   
97.
This study considers a flowshop type production system consisting of m machines. A material handling robot transports the parts between the machines and loads and unloads the machines. We consider the sequencing of the robot moves and determining the speeds of these moves simultaneously. These decisions affect both the robot’s energy consumption and the production speed of the system. In this study, these two objectives are considered simultaneously. We propose a second order cone programming formulation to find Pareto efficient solutions. We also develop a heuristic algorithm that finds a set of approximate Pareto efficient solutions. The conic formulation can find robot schedules for small cells with less number of machines in reasonable computation times. Our heuristic algorithm can generate a large set of approximate Pareto efficient solutions in a very short computational time. Proposed solution approaches help the decision-maker to achieve the best trade-off between the throughput of a cell and the energy efficiency of a material handling robot.  相似文献   
98.
孙凯  陈成  陈英武  贺仁杰 《控制工程》2012,19(4):695-698
成像卫星星地联合调度问题,涉及调度对象众多,约束条件复杂,需要考虑任务的观测、回传2个过程,是一个具有两层时间窗口约束的双层优化问题,统一建模困难。根据问题的特点,采用基于阶段优化的方式,降低了问题的复杂性。把问题分为观测调度阶段和数据回传调度阶段,分别给出了优化目标和约束条件,建立了基于阶段优化的成像卫星星地联合调度模型,实现了从任务观测到数据回传的全过程调度。仿真实例表明,该方法能够有效解决多星多站的协同任务调度问题。  相似文献   
99.
In places where mobile users can access multiple wireless networks simultaneously, a multipath scheduling algorithm can benefit the performance of wireless networks and improve the experience of mobile users. However, existing literature shows that it may not be the case, especially for TCP flows. According to early investigations, there are mainly two reasons that result in bad performance of TCP flows in wireless networks. One is the occurrence of out-of-order packets due to different delays in multiple paths. The other is the packet loss which is resulted from the limited bandwidth of wireless networks. To better exploit multipath scheduling for TCP flows, this paper presents a new scheduling algorithm named Adaptive Load Balancing Algorithm (ALBAM) to split traffic across multiple wireless links within the ISP infrastructure. Targeting at solving the two adverse impacts on TCP flows, ALBAM develops two techniques. Firstly, ALBAM takes advantage of the bursty nature of TCP flows and performs scheduling at the flowlet granularity where the packet interval is large enough to compensate for the different path delays. Secondly, ALBAM develops a Packet Number Estimation Algorithm (PNEA) to predict the buffer usage in each path. With PNEA, ALBAM can prevent buffer overflow and schedule the TCP flow to a less congested path before it suffers packet loss. Simulations show that ALBAM can provide better performance to TCP connections than its other counterparts.  相似文献   
100.
This paper introduces MULBS, a new DCOP (distributed constraint optimization problem) algorithm and also presents a DCOP formulation for scheduling of distributed meetings in collaborative environments. Scheduling in CSCWD can be seen as a DCOP where variables represent time slots and values are resources of a production system (machines, raw-materials, hardware components, etc.) or management system (meetings, project tasks, human resources, money, etc). Therefore, a DCOP algorithm must find a set of variable assignments that maximize an objective function taking constraints into account. However, it is well known that such problems are NP-complete and that more research must be done to obtain feasible and reliable computational approaches. Thus, DCOP emerges as a very promising technique: the search space is decomposed into smaller spaces and agents solve local problems, collaborating in order to achieve a global solution. We show with empirical experiments that MULBS outperforms some of the state-of-the-art algorithms for DCOP, guaranteeing high quality solutions using less computational resources for the distributed meeting scheduling task.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号